
HAL Id: hal-01397685
https://hal.science/hal-01397685

Submitted on 16 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safety Analysis of Bitcoin Improvement Proposals
Emmanuelle Anceaume, Thibaut Lajoie-Mazenc, Romaric Ludinard, Bruno

Sericola

To cite this version:
Emmanuelle Anceaume, Thibaut Lajoie-Mazenc, Romaric Ludinard, Bruno Sericola. Safety Analysis
of Bitcoin Improvement Proposals. 2016 IEEE 15th International Symposium on Network Computing
and Applications (NCA), IEEE, Oct 2016, Cambridge, United States. �hal-01397685�

https://hal.science/hal-01397685
https://hal.archives-ouvertes.fr

Safety Analysis of Bitcoin Improvement Proposals
Emmanuelle Anceaume, Thibaut Lajoie-Mazenc

CNRS, UMR 6074 - IRISA
firstname.lastname@irisa.fr

Romaric Ludinard
ENSAI, UMR 9194 - CREST

romaric.ludinard@ensai.fr

Bruno Sericola
INRIA RBA

bruno.sericola@inria.fr

Abstract—Decentralized cryptocurrency systems offer a
medium of exchange secured by cryptography, without the need
of a centralized banking authority. Among others, Bitcoin is
considered as the most mature one. Its popularity lies on the
introduction of the concept of the blockchain, a public distributed
ledger shared by all participants of the system. Double spending
attacks and blockchain forks are two main issues in blockchain-
based protocols. The first one refers to the ability of an adversary
to use the very same bitcoin more than once, while blockchain
forks cause transient inconsistencies in the blockchain. We
show through probabilistic analysis that the reliability of recent
solutions that exclusively rely on a particular type of Bitcoin
actors, called miners, to guarantee the consistency of Bitcoin
operations, drastically decreases with the size of the blockchain.

Keywords— Bitcoin; Peer-to-Peer Systems; Safety ; Ana-
lytical Performance Evaluation

I. INTRODUCTION

The goal of decentralized cryptocurrency systems is to offer
a medium of exchange secured by cryptography, without the
need of a centralized banking authority. An important design
issue of such a platform is to prevent the occurrence of double-
spending attacks, which consists in using the same resources
(the same ”coins”) in more than one transaction. Classically,
the centralized banking authority serves as a trusted third-
party that verifies the validity of every single transaction which
prevents this kind of attacks. In absence of such a trusted
entity, an alternative mechanism must be implemented.

Satoshi Nakamoto proposed a solution in 2008 [20]: the
Bitcoin cryptocurrency system, the first decentralized ecosys-
tem providing users with a virtual currency to buy and sell
services or goods. Bitcoin relies on a public distributed ledger,
the so-called blockchain, that records all the valid transactions
ever issued in the Bitcoin system. Technically, the blockchain
is built by some of the participants of the ecosystem, the
miners, through the creation of blocks. Each block contains
the set of most recently issued transactions. The strength of
the blockchain design is that it does not require participants to
trust each other, each one maximizing its self-interest. Thus, it
can be viewed as a way to create a global trusted third-party
from a network populated by untrusted participants.

To prevent double-spending attacks, the blocks (and thus
all the transactions) must be totally ordered so that every
participant of the system can check their validity. However,
concurrent blocks can be created due to propagation delays
and this must be carefully handled to enforce the consistency

of the blockchain. This is achieved by introducing some syn-
chronization among the miners: to successfully create a block,
a miner must first solve a resource consuming computation,
the so-called proof-of-work. Miners are rewarded for each
successfully created block, which introduces a competition
among them to create the next block as fast as possible.

Such a competition may in its turn give rise to concurrent
blocks, and thus to the creation of different branches in the
blockchain. This phenomenon is called a blockchain fork. Even
if Bitcoin eventually converges to a legal state (i.e. a unique
branch), stabilization may take time. For instance, the March
2013 fork [7] was resolved after several hours. During a fork,
an attacker may repeatedly perform double-spending attacks.
Given the increasing popularity of Bitcoin, one may expect
that the abuse of the weaknesses in its design will increase.

A large amount of work has been devoted to mitigating this
salient issue and, among them, three propositions have recently
emerged as the very first convincing solutions to solve the
double-spending attack. These solutions, respectively called
Bitcoin-NG [6], PeerCensus [5], and BizCoin [13], propose to
give additional specific power to miners, by coordinating their
view of the blockchain through either executions of Byzantine-
tolerant consensus protocols or leadership of one of them.

a) Our contributions: The paper is devoted to a thorough
analysis of the behavior of these three works with respect
to their capacity to handle numerous transactions and their
resilience to malicious miners. Prior to this analysis, we
provide an extensive description of the Bitcoin ecosystem from
which we derive a formalization of its properties in terms of
validity, confirmation, safety and liveness. We then present
the model that allows us to investigate the properties of the
three above mentioned solutions. The outcome of this study
contains a mixture of both favorable and negative results.
Bitcoin-NG, by relying on a leader, neither improves upon
Bitcoin safety, nor scales to a large number of transactions. De-
spite the support of Byzantine-tolerant consensus algorithms,
PeerCensus does not tolerate the well-known threshold of
1/3 malicious miners. On the other hand, by combining the
design of both Bitcoin-NG and PeerCensus and by relying
on the CoSi protocol [24] for collective signing, BizCoin
shows good theoretical performance. Its resilience to malicious
miners corroborates results of Byzantine tolerant distributed
algorithms [15] for large enough signature groups: in the
presence of less than one third of Byzantine miners, BizCoin
is safe with high probability if the number of miners involved
in the signature group exceeds 1, 000. However, BizCoin has978-1-5090-3216-7/16/$31.00 c©2016 IEEE

not yet been implemented with more than 148 miner because
of the complexity of the underlying CoSi protocol [12].

b) Road map: To summarize, the remainder of the paper
is organized as follows. Section II presents the necessary
background to understand Bitcoin properties in terms of safety
and liveness. Section III presents an analysis of the safety guar-
anteed by respectively Bitcoin-NG, PeerCensus and BizCoin.
Section IV presents a brief survey of the crypto systems that
have appeared since 2009. Finally, Section V concludes.

II. BACKGROUND ON THE BITCOIN NETWORK

The Bitcoin network [20] is a peer-to-peer payment network
that relies on distributed algorithms and cryptographic tools to
allow entities to pseudonymously buy goods or services with
digital currencies called bitcoins. Its main ingredients are (i)
transactions issued by buyers each time they wish to spend bit-
coins, (ii) the blockchain, an ordered sequence of blocks, each
one being a set of issued transactions, maintained distributively
by the entities of the system, and (iii) a pool of pending
transactions eligible for confirmation in the blockchain, locally
maintained by each entity. Three types of entities participate
in the Bitcoin ecosystem: users, that send and receive bitcoins,
peers that propagate transactions in the network and maintain a
local copy of the blockchain, and miners, that establish which
transactions will appear in the blockchain, and the order in
which they will appear. Of course, at any time, an entity may
play any of the roles in the Bitcoin ecosystem.

A. The Bitcoin protocol

To illustrate the description of the Bitcoin ecosystem, we
will take the example of individual users called Alice, Bob
and Carol. Alice owns bitcoins, and she wishes to send them
to Bob and Carol for the goods they provide to her. Bitcoins
are entirely virtual. They are accessible via Bitcoin accounts.
An account, which refers to the elementary functional entity of
the Bitcoin ecosystem, is described by a key, derived from the
public key of the public/private key generated by Bitcoin users.
Keys are used to prove the ownership of bitcoins. A bitcoin
account is locked by its owner, and spending bitcoins amounts
to unlocking that account and transferring its value to that of
the recipient of the transaction who will be credited once the
transaction is confirmed in the blockchain (more details will
be given in the sequel). Note that to hide their profile, it is
recommended that users generate a new public/private key for
each transaction they are recipient of. An important aspect
of Bitcoin accounts is their indivisibly, meaning that once an
account has been created by a user, it will be credited by a
single transaction and will be debited by a single subsequent
transaction. Note that Alice may voluntarily pay a small trans-
action fee which will be kept by the miner that will succeed in
confirming Alice’s transaction in the blockchain. In this case,
the total amount of bitcoins in the input accounts is greater
than the amount of bitcoins transferred to the output accounts.
The successful miner creates an account that will be credited
with the fees from all the transactions of the block, along with
a block reward (whose amount is currently set to 12.5 bitcoins;

Transaction T1

Transaction T3

Transaction T4

Transaction T2

a1
50

b1
30

c1
20

c2
25

d1

30

b2

20
d2
21
c3
3

Fig. 1. Modelling the evolution of users’ accounts

it is halved every 210,000 blocks, which last occurred in July
2016) through a coinbase transaction, the way Bitcoin creates
money. Specifically, to send bitcoins to Bob and Carol, Alice
creates a transaction T = ({ai1 , . . . , aim}, {bj , c`}), where
{ai1 , . . . , aim}, m ≥ 1, refers to Alice’s credited accounts
that she wishes to spend. Set {ai1 , . . . , aim} is called the
input set of transaction T , and is denoted by I . The inputs
of a transaction are actually the hash of the transactions that
credited Alice’s accounts. We refer directly to the accounts for
a sake of clarity. Accounts bj and c` have respectively been
created by Bob and Carol to receive bitcoins from Alice’s
accounts. Set {bj , c`} is called the output set of T , and is
denoted by O. The amount of bitcoins of account ui is denoted
by v(ui). T also includes Alice’s digital signature on the input
and output accounts; thus, any user can verify its integrity by
checking the chain of signatures.

To describe the evolution of user accounts, we have adopted
a place/transition model as depicted in Figure 1. User accounts
are represented by places (circles) and transactions by transi-
tions (vertical bars). The place from which an arc runs to a
transition is an input place of the transition, and the place to
which an arc runs to is an output place of the transition. The
number of bitcoins in a user account represents the tokens of
the place. A transition may fire if there are sufficiently many
tokens in its input places, and it consumes all of them upon
firing. Places and transitions are dynamically created.

In Figure 1, Alice creates transaction T1 to transfer the
50 bitcoins of her account a1 to Bob and Carol’s accounts:
30 bitcoins to b1 and 20 to c1. Transaction T4 contains a
transaction fee equal to (25+20)− (20+21+3) = 1 bitcoin.
T2 is a coinbase transaction.

We say that a transaction T = (I,O) is well-formed if the
transition can be fired, i.e

∑
i∈I v(i) ≥

∑
o∈O v(o), and the

creator of T is the owner of the input accounts of T . In the
following we consider that all the transactions are well-formed.

When Bob and Carol receive the digitally signed transaction

T , they submit it to any peer p of Bitcoin for a validity check.
Informally, a transaction T = (I,O) is valid if p has received
all the transactions that have credited all the accounts in I
and not received any transaction already using any of those
same accounts. To formally define the validity property we
introduce the notion of a local view. The local view of p is
the pool of pending transactions at p together with the content
of p’s blockchain B(p). If we respectively denote by V(p)

k and
P(p)
k the local view of p and p’s pool of pending transactions

when p receives its k-th transaction, then we have

V(p)
k = P(p)

k ∪ B(p).

The current view and the current pool of pending transactions
of peer p are simply denoted by V(p) and P(p), respectively.
We suppose that p has initialised V(p)

1 with the first block
broadcast by Satoshi, containing a single coinbase transaction.
When p receives a new transaction T , p declares it valid
according to the following definition.

Definition 1 (Validity Property). Given a peer p of the Bitcoin
network, p considers its k-th transaction T = (I,O) as locally
valid if and only if the following three properties hold:

∀a ∈ I, ∃T ′ = (I ′, O′) ∈ V(p)
k−1, a ∈ O′ (1)

∀T ′ = (I ′, O′) ∈ V(p)
k−1, I ∩ I ′ = ∅ (2)

∀a ∈ O,∀T ′ = (I ′, O′) ∈ V(p)
k−1, a /∈ O′. (3)

In the following, in accordance with Bitcoin requirements,
we suppose that a user creates a new account for each trans-
action she receives. That is Relation (3) is always satisfied.

As soon as T = (I,O) is considered locally valid, p
inserts it in its transaction pool, that is P(p)

k ← P(p)
k−1 ∪ {T},

then positively acknowledges Bob and Carol, and finally
disseminates T in the Bitcoin network. On the contrary, if
T = (I,O) is not locally valid, two cases must be considered:
either Relation (1) or Relation (2) does not hold. In the former
case, p inserts T in its local pool (i.e. P(p)

k ← P(p)
k−1∪{T}) and

disseminates it in the Bitcoin network. Transaction T becomes
locally valid when p receives the transactions crediting the
missing accounts. In the latter case, p has already received a
locally valid transaction T ′ = (I ′, O′) such that a = I ∩ I ′:
account a is in a double-spending situation. Formally,

Definition 2 (Double-spending situation). Given a Bitcoin
account ai, account ai is in a double-spending situation if
there exist two transactions T1 = (I1, O1) and T2 = (I2, O2)
such that :

T1, T2 ∈
⋃
p

V(p) ∧ ai ∈ I1 ∩ I2.

A transaction T is conflict-free if none of the inputs of
T = (I,O) is involved in a double-spending situation and all
of the transactions that credited T ’s inputs are conflict-free:

Definition 3 (Conflict-free transaction). A transaction T =
(I,O) is conflict-free if ∀a ∈ I , a is not involved in a double-
spending situation and the transaction T ′ = (I ′, O′) ∈ V(p)

with a ∈ O′ is conflict-free.

By construction, the induction is finite because Bitcoin
creates money only through coinbase transactions, which are
by definition conflict-free. Each T ′ exists by Relation (1).

Preventing a double-spending situation from transforming
into a successful double-spending attack (i.e. Alice succeeds
in converting the content of one of her accounts into goods
twice) is the key challenge of many virtual crypto-systems.

The solution adopted in Bitcoin to mitigate double-spending
attacks, without relying on a central trusted authority, consists
in gathering transactions into blocks and totally ordering them
in a publicly accessible and distributively managed ledger. This
is the role of miners. Briefly, the construction of a well-formed
block uses the hashcash proof-of-work function which consists
in computing h(x)/2m(m− k), where h is the double SHA-
256 hash function, m is the size of the hash output, i.e., m =
256, and k is the work factor. The value of x is obtained
by combining, among others, the sequence number of the last
block in the blockchain, the set of locally pending transactions
and a counter c incremented by the miner until the first k bits
of the hash output are 0. The work factor k is adjusted every
2016 blocks to provide an average block creation time of 10
minutes. Once the proof-of-work has been generated by some
miner q, it forms, together with the set of locally pending
transactions P(q), a numbered block b` that q appends to B(q).
Miner q disseminates this block in the Bitcoin network so
that each peer appends it to its local copy of the blockchain.
The status of a transaction changes from pending to locally
confirmed whenever it is included in a block.

Definition 4 (Local confirmation). Given a peer q of the
Bitcoin network, and a locally valid transaction T ,

T is locally confirmed⇐⇒ ∃!B ∈ B(q), T ∈ B.

The local confirmation level of transaction T at peer q
is equal to the depth of block B, which corresponds to the
number of blocks appended in B(q) after B, including B.

Bitcoin miners are incentivized by receiving, when they
successfully generated a block, a reward in the form of the
coinbase transaction, defined above. Blocks, being generated
at a regular and very slow rate, provide a fully distributed
synchronization of the network. Since bitcoins are only created
through block rewards, it also ensures their rarity, leading to
their high financial value and hence to the high incentive to
create blocks.

B. Blockchain forks

Rewarding the creation of blocks introduces a competition
among miners. This competition may lead to concurrent blocks
(i.e. equally numbered blocks) and thus to a blockchain with
a tree structure. This phenomenon is called a blockchain fork.
A blockchain fork is resolved as soon as a miner generates
a proof-of-work and disseminates the corresponding block
b` quickly enough so that no concurrent miner has found
a valid proof-of-work before it receives it. In that case, the
branch of the local blockchain that contains b` is longer than
any other concurrent branches, which are pruned from the

tree, leading to a blockchain with a unique branch. Note
that ”pruned” transactions that do not already belong to the
unique branch are added again in the local transaction pools
for a possible confirmation in subsequent blocks. Blockchain
forks must be quickly resolved for two main reasons. Firstly,
malicious miners can take advantage of this phenomena to
trigger double-spend attacks. Such an attack is successful if
the branch that remains after the resolution of the fork contains
the illegitimate transaction issued by the attacker. Nakamoto’s
analysis, as well as subsequent ones [8], [11], [19] focus on
the race between malicious miners and honest ones to generate
the longer branch of the blockchain. Suppose that Bob is the
recipient of a transaction issued by the malicious sender Alice,
and that Alice manipulates a proportion µ of the miners of
the system. Nakamoto has shown that with probability less
than 0.1%, Bob’s transaction will be rejected if its level of
confirmation z in the local blockchain of some peer is less than
5 when µ = 10%. The level of confirmation must increase to
z = 8 when µ increases to µ = 15%, and to z = 15 when 25%
of the miners are corrupted. In the following, a transaction
is said deeply confirmed once it reaches such a confirmation
level. The second reason is that, in the presence of several
branches, the global computing power of the miners is spread
over the branches. This leads to an increase of the average
block generation time, and accordingly to the augmentation of
the time needed by transactions to become deeply confirmed.

C. Bitcoin properties

We can now state Bitcoin’s fundamental properties:

Property 1 (Bitcoin Liveness). A conflict-free transaction will
eventually be deeply confirmed in the blockchain of an honest
peer.

Property 2 (Bitcoin Safety). A conflict-free transaction deeply
confirmed by some honest peer will eventually be deeply
confirmed by all honest peers with the same confirmation level.

Two important remarks are in order.

Remark 1. Properties 1 and 2 guarantee that the view of all
honest peers have the same prefix.

Remark 2. Properties 1 and 2 each apply to transactions
issued by honest users, but honest recipients of conflictual
transactions have no guarantee of receiving the corresponding
coins.

To summarize, to prevent money counterfeiting, Bitcoin
opens the door to double-spending attacks against users that
optimistically assume that valid or even locally confirmed
transactions will eventually be deeply confirmed.

Given the increasing popularity of Bitcoin, any user may
legitimately expect a stronger liveness property than the one
implemented by Bitcoin. Indeed, in its current implementation,
a user cannot detect that a transaction it is recipient of
is conflictual and, thus, has no guarantee to be paid for
the service provided before said transaction becomes deeply
confirmed, which takes one hour in average.

In the sequel of the paper, we present three recent works that
aim at providing stronger guarantees to honest users through
linearizable operations on Bitcoin accounts. We show that
none of these works provide sufficient guarantees in presence
of malicious miners.

III. RELYING ON MINERS AS A TRUSTED THIRD PARTY

Three recent works, Bitcoin-NG [6], PeerCensus [5], and
BizCoin [13], have proposed to rely exclusively on miners to
take in charge the full process of validation and confirmation to
guarantee that all the operations triggered on the transactions
are atomically consistent. Atomic consistency guarantees that
all the updates on shared objects are perceived in the same
order by all entities of the system. In all these protocols, time is
divided into epochs. An epoch ends when a miner successfully
generates a new block. This miner becomes the leader of the
subsequent epoch. Each of these solutions rely on a dedicated
set E`, with ` ∈ {1, w,∞}. This set is built along consecutive
epochs as follows. At epoch k, if |E`| < `, the new leader
is added to E`. Otherwise, the leader at epoch k + 1 − ` is
removed from E` and the new leader is added. Once set E`
reaches size `, it remains at constant size `.

Strong consistency is implemented in these protocols by
different means. In Bitcoin-NG, it is achieved by delegating
the validation process to E1, i.e. the leader of the current epoch.
In PeerCensus it is implemented by relying on Byzantine
Fault Tolerant consensus protocols (e.g. [4], [9], [14]) run
by E∞ (recall that it contains all the miners that successfully
generated a block). Finally, BizCoin leverages both ideas by
using the leader and a consensus run by Ew. In all these
protocols, members of E`, with ` ∈ {1, w,∞}, are entitled
to validate and confirm issued transactions and blocks and
to disseminate them so that each peer integrates them in its
local blockchain. In the remainder of the section we show that,
surprisingly enough, relying on miners to confirm transactions
does not prevent malicious users from successfully double-
spending bitcoins. Prior to doing that, we present the model
we use to analyze the safety of these protocols.

A. Model

We assume the presence of an adversary controlling a
proportion µ ∈ (0, 1) of the whole set of miners. This
adversary aims at exploiting the protocol under consideration
in order to perform double spending attacks. Miners that are
controlled by the adversary and the blocks they generate are
called Byzantine or malicious. On the contrary, miners that are
not controlled by the adversary and their blocks are considered
honest (i.e. they follow the prescribed protocol) and represent
a proportion (1 − µ) of the whole set of miners. We assume
that each miner (honest or not) has the same computational
power. Finally, we assume a constant block generation time.

Let Bk = (h,m) denote the state of the blockchain at epoch
k, where h and m represent the number of honest (respectively
malicious) blocks. We assume that Nakamoto, the Bitcoin
system creator, is honest and thus we have B0 = (1, 0).
Process B = {Bk | k ≥ 0} represents the evolution of the

blockchain composition over epochs. From state Bk = (h,m)
two transitions are possible: the next block can either be
generated by a honest miner, and the blockchain goes to state
Bk+1 = (h + 1,m) with probability 1 − µ, or generated by
a malicious miner, and Bk+1 = (h,m + 1), which happens
with probability µ. Process B is an homogeneous discrete time
Markov chain over the discrete state space N∗×N. Non null
probability transitions are given for all (h,m) ∈ N∗ ×N by

P{Bk+1 = (h+ 1,m) | Bk = (h,m)} = 1− µ, (4)
P{Bk+1 = (h,m+ 1) | Bk = (h,m)} = µ. (5)

B. Analysis of Bitcoin-NG Safety

As previously described, in Bitcoin-NG each epoch is led
by a single miner entitled to validate the set of transactions
it receives. Upon reception of a new one, the leader has to
check if it is locally valid, i.e. if it satisfies Definition 1. If so,
the leader cryptographically signs it and disseminates it. Only
signed transactions may be confirmed, i.e. inserted in a block.

Note that if the leader is malicious, it may easily create
double-spending transactions and sign them with no consider-
ation for the other transactions whose recipients are honest. By
assumption a proportion µ ∈ (0, 1) of miners are controlled
by the considered adversary. Thus in expectation, a proportion
µ of blocks are malicious as well. The evolution of the
blockchain can be seen as a random walk over N∗×N. Given
k ≥ 0, h ≥ 1 and m ≥ 0, and with B0 = (1, 0) as initial state,
we easily derive :

P{Bk = (h,m)} =
(

k

h− 1

)
(1−µ)h−1µm1{k=h+m−1} (6)

The probability that at epoch k the blockchain does not
contain any malicious block is equal to P{Bk = (h, 0)} =
(1−µ)k−1 if h = k−1 and 0 otherwise. Currently, the Bitcoin
blockchain counts more than 420 000 blocks, making this
probability close to 0. Furthermore, one can note the scalability
issue in this protocol: in the current setting, a leader has to
sign on average 1500 transactions per epoch, this volume being
steadily growing. Consequently, Bitcoin-NG approach cannot
cope with an adversarial environment, and hardly scales to a
high number of transactions.

C. Analysis of PeerCensus Safety

Contrarily to Bitcoin-NG, PeerCensus [5] proposes to in-
volve the whole set E∞ of successful miners in a Byzan-
tine Fault Tolerant consensus protocol like PBFT [4]. Prior
to focusing on PeerCensus safety, one may easily notice
that the scalability of this solution highly depends on the
blockchain size. Indeed, by involving in the k-th execution of
the Byzantine tolerant consensus algorithm the k−1 previously
successful miners, this would lead, today, to a consensus
run by k ≥ 420, 000 miners. The message complexity of
Byzantine tolerant consensus is classically in O(k3), leading
these algorithms to barely scale beyond 10 participants which
clearly weakens the feasibility of this approach.

Beyond this aspect, making E∞ membership at the k-th
execution of consensus depend on the decision obtained at the

(k − 1)-th consensus execution leads with high probability
to the permanent pollution of E∞. By pollution we mean
the presence of more than one third of byzantine miners in
E∞, even if from a global point of view, the Bitcoin network
contains less than one third of byzantine entities (i.e. µ < 1/3).
The following analysis proves our assertion.

According to [15], a consensus cannot be reached among n
participants if more than (n−1)/3 participants are byzantine.
We say that the state Bk = (h,m) of E∞ at epoch k is polluted
if the number m of byzantine miners belonging to E∞ is larger
than or equal to (k − 1)/3. Conversely, a state that is not
polluted is said to be safe. We partition the space state N∗×N
into two sub-spaces S∞ and P∞ corresponding respectively
to the set of safe and polluted states. We have

S∞ = {(h,m) ∈ N∗ ×N | h ≥ 2m+ 1}
and P∞ = {(h,m) ∈ N∗ ×N | h ≤ 2m}.

Thus, using Relation (6), the probability that E∞ is in a safe
state at epoch k is given by

P{Bk ∈ S∞} =
k+1∑

h=1, 3h≥2k+3

(
k

h− 1

)
(1− µ)h−1µk−h+1

=

k∑
h=d2k/3e

(
k

h

)
(1− µ)hµk−h.

Using the central limit theorem, we get

lim
k−→∞

P{Bk ∈ S∞} =

 0 if µ > 1/3
1/2 if µ = 1/3
1 if µ < 1/3.

(7)

Relation (7), while in accordance with [5], does not allow
one to claim that the execution that led to state Bk was
safe, i.e., ∀k′ ≤ k,Bk′ ∈ S∞. This argument is of prime
importance, as once E∞ is polluted, the adversary will be able
to impose its decision at each forthcoming consensus, either
on the transactions to be confirmed or on the blocks to be
included in the blockchain.

We now derive the probability of k consecutive safe ex-
ecutions of the consensus. Let T be the number of epochs
spent in states of S∞ before reaching for the first time a
state of P∞. Formally, the random variable T is defined by
T = min{k ≥ 0 | Bk ∈ P∞}, and we have P{T > k} =
P{B0 ∈ S∞, B1 ∈ S∞, . . . , Bk ∈ S∞}. Theorem 1 provides
a way to compute the probability of being in a given state
Bk = (h,m) ∈ S∞ before the first corruption.

Theorem 1. For all (h,m) ∈ S∞ (i.e. h ≥ 1, m ≥ 0 et
h ≥ 2m+ 1) and k = m+ h− 1, we have

P{T > k,Bk = (h,m)}

=

[(
k + 1

h

)
− 3

(
k

h

)]
(1− µ)h−1µm1{k=m+h−1}. (8)

Proof. We define f(h,m) = P{T > k,Bk = (h,m)} for
(h,m) ∈ S∞ (with k = m+h−1) and f(h,m) = 0 otherwise.

0 20 40 60 80 100
Size of the blockchain k

0.0

0.2

0.4

0.6

0.8

1.0
P
(T
>
k
)

`(1/10) =7/9

`(1/4) =1/3

µ=1/10

µ=1/3

(a) P{T > k} as a function of µ and the
blockchain size k

0.0 0.1 0.2 0.3 0.4 0.5
µ

0.0

0.2

0.4

0.6

0.8

1.0

`(
µ
)

`(1/10) =7/9

`(1/4) =1/3

`(µ)

(b) Asymptotic behavior of P{T > k} as a func-
tion of µ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.33

µ

0.0

0.2

0.4

0.6

0.8

1.0

P
{ W k

∈S
w

}

1 hour
6 hours
1 day
1 week
1 month
6 months

(c) P{Wk ∈ Sw} as a function of µ and w

Fig. 2. Analysis of the safety of PeerCensus and BizCoin algorithms

The initial state being (1, 0), we have f(1, 0) = 1. Using the
Markov property, we have

f(h,m) = (1− µ)f(h− 1,m)1{h≥2m+2} + µf(h,m− 1).

The relation is true for m = 0. Indeed the previous relation
gives, for m = 0,

f(h, 0) = (1− µ)f(h− 1, 0)1{h≥2},

that is f(h, 0) = (1 − µ)h−1, for every h ≥ 1. Moreover,
Relation (8) gives the same result for m = 0. We now use a
recurrence on two levels. Suppose that Relation (8) is true for
integer m− 1. For h = 2m+ 1, we have

f(2m+ 1,m) = µf(2m+ 1,m− 1)

=

[(
3m

2m+ 1

)
− 3

(
3m− 1

2m+ 1

)]
(1− µ)2mµm

=
(3m)!

(2m+ 1)!m!
(1− µ)2mµm,

which is the result given by Relation (8).
Suppose that the relation is true for integers h− 1 and m,

with h ≥ 2m+ 2. The recurrence hypothesis gives

f(h,m) = (1− µ)f(h− 1,m) + µf(h,m− 1)

=

[(
m+ h− 1

h− 1

)
− 3

(
m+ h− 2

h− 1

)
+

(
m+ h− 1

h

)
− 3

(
m+ h− 2

h

)]
(1− µ)h−1µm.

Grouping the first and the third term, and the second and the
fourth leads, since k = m− h+ 1, to

f(h,m) =

[(
k + 1

h

)
− 3

(
k

h

)]
(1− µ)h−1µm,

which completes the proof.

Theorem 2 gives the distribution of the first instant T of
pollution of E∞, as well as its asymptotic behavior.

Theorem 2. For all µ ∈ (0, 1) and k ≥ 0, we have

P{T > k} = 1

1− µ

k+1∑
h=d2k/3e+1

(
k + 1

h

)
(1− µ)hµk+1−h

− 3µ

1− µ

k∑
h=d2k/3e+1

(
k

h

)
(1− µ)hµk−h.

The limit `(µ) = lim
k−→∞

P{T > k} is then given by

`(µ) =


0 if µ > 1/3

1− 2µ

1− µ
if µ ≤ 1/3.

(9)

Proof. Theorem 1, gives for all k ≥ 0,

P{T > k} =
∑

(h,m)∈S

[(
k + 1

h

)
− 3

(
k

h

)]
× (1− µ)h−1µm1{k=m+h−1}

=

k+1∑
h=1, 3h≥2k+3

(
k + 1

h

)
(1− µ)h−1µk−h+1

−
k∑

h=1, 3h≥2k+3

(
k

h

)
(1− µ)h−1µk−h+1

=
1

1− µ

k+1∑
h=d2k/3e+1

(
k + 1

h

)
(1− µ)hµk+1−h

− 3µ

1− µ

k∑
h=d2k/3e+1

(
k

h

)
(1− µ)hµk−h.

The second result is derived from the central limit theorem.

We observe in Figure 2(a) the fast convergence of T to its
limit `(µ), while Figure 2(b) shows that when 0 < µ ≤ 1/3,
the probability to have a series of safe consensus executions
is strictly less than 1. For instance, for µ = 1/4 < 1/3, we
have `(µ) = 1/3 meaning that among all the trajectories of k
consensus executions, only 1/3 of them are safe. This result
clearly shows the limitations of the PeerCensus approach.

D. BizCoin

BizCoin [13] combines some of the ideas proposed in
PeerCensus and Bitcoin-NG: BizCoin uses the last successful
miner as the leader of the current epoch but the confirmation
process is handled by tolerant Byzantine consensus execu-
tions, implemented through a cryptographic collecting signing
scheme [24]. Furthermore, differently from PeerCensus, which
relies on E∞, BizCoin restricts the consensus membership to
Ew, containing the current leader and the w−1 previous ones.

We proceed as above to analyze BizCoin safety. Let us
consider the random variable M correponding to the type
of the current leader. According to Relations (4) and (5), at
epoch k, the leader is honest, i.e. M = 0, with probability
P{M = 0} = 1 − µ and byzantine, i.e. M = 1, with
probability P{M = 1} = µ. We denote by M0,k, . . . ,Mw−1,k
the type of the last w leaders at epoch k. The vector Wk =
(M0,k, . . . ,Mw−1,k) ∈ {0, 1}w represents the state of Ew. The
process W = {Wk, k ≥ 0} evolves as follows:

∀k ≥ 1,∀1 ≤ i ≤ w − 1,Mi,k =Mi−1,k−1 (10)

where (M0,k)k≥1 is a sequence of independent and identically
distributed Bernoulli random variable with P{M0,k = 0} =
1−µ and P{M0,k = 1} = µ. The process W = {Wk, k ≥ 0}
is thus a homogeneous discrete-time Markov chain over the
state space {0, 1}w, representing the evolution of the compo-
sition of Ew over epochs.

Similarly to Section III-C, a state Wk is polluted if the
number of Byzantine miners belonging to Ew is larger than
(w − 1)/3. Conversely, a state that is not polluted is safe.
We are interested in the number of Byzantine miners in Ew at
epoch k. We denote this random variable by Nk which is given
by Nk =

∑w−1
i=0 Mi,k. We partition the space state {0, 1}w

into two subsets Sw and Pw corresponding respectively to the
set of safe and polluted states. We then have

Sw = {(m0, . . . ,mw−1) ∈ {0, 1}w |
w−1∑
i=0

mi ≤ (w − 1)/3},

Pw = {(m0, . . . ,mw−1) ∈ {0, 1}w |
w−1∑
i=0

mi > (w − 1)/3}.

Theorem 3 derives the probability of having Ew in a safe state
in steady state, and shows that the steady state is reached at
epoch k = w.

Theorem 3. For all k ≥ w, we have

P{Wk ∈ Sw} =
(w−1)/3∑

`=0

(
w

`

)
µ`(1− µ)w−`.

Proof. From Relation (10), we easily get for any k ≥ 1, Nk =
Nk−1 +M0,k −Mw−1,k−1. Expanding this relation gives

Nk = N0 +

k∑
`=1

M0,` −
k−1∑
`=0

Mw−1,`. (11)

Observing that

k−1∑
`=0

Mw−1,` =



k−1∑
`=0

Mw−1−`,0 if k ≤ w

w−1∑
`=0

Mw−1−`,0 +

k−1∑
`=w

M0,`−w+1 if k > w

bwpool
btcc
f2pool
antpool
bitfury
bwpool
btcc
f2pool
antpool
bitfury
bwpool
btcc
f2pool
antpool
bitfury
bwpool
btcc
f2pool
antpool
bitfury
bwpool
btcc
f2pool
antpool
bitfury
bwpool
btcc
f2pool
antpool
bitfury

0

5

10

15

20

25

30

35

1 hour

6 hours

1 day

1 week

1 month

6 months

Fig. 3. Proportion of blocks mined by the most represented mining pools
according to the epoch length w

and putting this last relation into Relation (11) provides the
following result:

Nk =



k∑
`=1

M0,` +

w−1−k∑
`=0

M`,0 if k ≤ w − 1

k∑
`=k−w+1

M0,` if k ≥ w.
(12)

Thus, for k ≥ w, Nk is the sum of w i.i.d. Bernoulli random
variables with the parameter µ, so we have

P{Wk ∈ Sw} = P{Nk ≤ b(w − 1)/3c}

=

(w−1)/3∑
`=0

(
w

`

)
µ`(1− µ)w−`.

Note that this expression does not depend on k, for k ≥ w,
meaning that the stationary regime is reached at epoch w.

Note that the result provided by Theorem 3 is consistent
with Relation (7) when w tends to infinity.

Figure 2(c) depicts the proportion of safe execution of
BizCoin as a function of w and µ. At the time of writing
this paper, the Bitcoin blockchain contains 422, 579 blocks.
We derive for k ≥ w values of P{Wk ∈ Sw} for a size of 1
hour (w = 6), 6 hours (w = 36), 1 day (w = 144), 1 week
(w = 1008), 1 month (w = 4320), 6 months (w = 25920).
There are two trends depending on µ: against a weak adversary
(µ ≤ 1/3), the system is safer with a large window, and
conversely against a strong adversary (µ > 1/3). The larger
the window, the lower the variance (i.e. the deviation from
the expected Byzantine fraction µ of Ew); a lower variance
prevents a weak adversary from randomly gaining power while
a higher variance helps honest nodes to “steal” safe runs from
strong adversaries.

Considering the effective power of an adversary, we inves-
tigate the Bitcoin blockchain. Over the last year, almost all
blocks were generated through mining pools, which refer to
groups of miners gathering their computational resources so
as to increase their probability to successfully mine a block. If
the block is effectively appended in the blockchain, its reward
is shared among mining pool participants. Mining pools may
embed a text data in blocks, allowing them to later identify
all the blocks they generated. At the time of writing this
paper, around 95.8% of the blocks generated over the last
year contain such a text signature.

Figure 3 depicts the proportion of blocks generated by
the most important mining pools, namely BWPool, BTCC,
F2Pool, AntPool and BitFury, over different sizes w of set Ew.
These proportions are derived from two different blockchain
trackers [1], [2]. We can note that for all sizes w that we
considered for set Ew, no mining pool has generated more than
w/3 blocks, i.e. if we consider that an adversary controls the
totality of a mining pool, we have µ < 1/3. In this case, tuning
the size of Ew to 1 week provides a good tradeoff between the
probability of safe executions of BizCoin and the algorithmic
complexity of these executions. Should these mining pools
be colluding, i.e. under the control of a unique adversary,
they would control around 60% of the miners, which clearly
jeopardizes the reliability of BizCoin.

To summarize, we have shown that none of the studied
solutions enhances Bitcoin’s behavior. Beyond the complexity
introduced by the consensus executions, the main issue comes
from the fact that all important decisions of Bitcoin are
solely under the responsibility of (a quorum of) miners, and
the membership of the quorum is decided by the quorum
members. This magnifies the power of malicious miners.

IV. RELATED WORK

Bitcoin [20] is considered as the pioneer cryptocurrency
systems. Since its inception, several altcoins [3] have emerged.
Most of their differences lie in practical details like use of
a database [17], block generation time [25], used hashing
algorithm [16] or an unlimited number of coins [23]. The
GHOST protocol [22] proposes a different rule to solve
blockchain forks, based on the number of blocks contained
in each blockchain subtree (in case of consecutive forks).
Meanwhile, CoinJoin [18] and CoinShuffle [21] propose to
mix transactions to avoid user linkability. Recent works have
focused on Bitcoin modeling and evaluation. Authors of [19]
prove that the Bitcoin protocol achieves consensus with high
probability, while [8] show that peers participating in the
Bitcoin network agree on a common prefix for the transaction
history, both in failure-free environments. In contrast, authors
of [10], [11] focused on adversarial environments. These
works study the feasibility of double spending attacks and
their detection. Finally, as analyzed in this paper, different
approaches [6], [5], [13] have been proposed to enforce Bitcoin
safety.

V. CONCLUSION

In this paper, we have formally exhibited the key concepts
ruling the Bitcoin protocol. These concepts are used to de-
rive fundamental properties of Bitcoin. To the best of our
knowledge, this is the first time that they are highlighted. We
then study three recent propositions aiming at enforcing strong
consistency in Bitcoin. These propositions exclusively rely on
miners. We have shown that i) none of these propositions is
safe in an adversarial environment, ii) worse, these solutions
amplify the ability of malicious users to exploit Bitcoin
flaws. We are currently working on the protocol vulnerabilities

related to double spending, and implementing our solution to
demonstrate its feasibility and evaluate its performance in a
real setting.

REFERENCES

[1] Bitcoin Network Hashrate - Bitcoinity.org. https://data.bitcoinity.org/
bitcoin/hashrate/, 2016.

[2] BlockTrail — Bitcoin API and Block Explorer. https://www.blocktrail.
com/BTC, 2016.

[3] S. Ahamad, M. Nair, and B. Varghese. A survey on crypto currencies. In
Proceedings of the International Conference on Advances in Computer
Science (AETACS), 2013.

[4] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In
Proceedings of the Symposium on Operating Systems Design and
Implementation (OSDI), 1999.

[5] C. Decker, J. Seidel, and R. Wattenhofer. Bitcoin Meets Strong Con-
sistency. In Proceedings of the International Conference on Distributed
Computing and Networking (ICDCN), 2016.

[6] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse. Bitcoin-ng: A
scalable blockchain protocol. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2016.

[7] N. Fincham. https://mineforeman.com/2013/03/14/
what-the-fork-was-that-a-forking-post-mortem/.

[8] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Proceedings of the Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques - Advances in Cryptology (EUROCRYPT), 2015.

[9] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The Next
700 BFT Protocols. In Proceedings of the European Conference on
Computer Systems (EuroSys), 2010.

[10] G. O. Karame, E. Androulaki, and S. Capkun. Double-spending fast
payments in bitcoin. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security (CCS), 2012.

[11] G. O. Karame, E. Androulaki, M. Rzeschlin, A. Gervais, and S. Capkun.
Misbehavior in bitcoin: A study of double-spending and accountability.
ACM Transactions on Information and System Security, 2015.

[12] E. Kokoris-Kogias, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Poster:
Bitcoin meets collective signing. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2016.

[13] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford. Enhancing bitcoin security and performance with strong
consistency via collective signing. In Proceedings of the USENIX
Security Symposium (USENIX Security), 2016.

[14] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
Speculative byzantine fault tolerance. In Proceedings of the Symposium
on Operating Systems Principles (SOSP), 2007.

[15] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 1982.

[16] Litecoin. Global Decentralized currency based on blockchain technol-
ogy. https://litecoin.org, 2011.

[17] A. Loibl. Namecoin. http://namecoin.info/, 2014.
[18] G. Maxwell. CoinJoin: Bitcoin privacy for the real world. https://en.

wikipedia.org/wiki/CoinJoin, 2013.
[19] A. Miller and J. LaViola Jr. Anonymous byzantine consensus from

moderately-hard puzzles: A model for bitcoin. Available on line:
http://nakamotoinstitute.org/research/anonymous-byzantine-consensus/,
2014.

[20] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https:
//bitcoin.org/bitcoin.pdf, 2008.

[21] T. Ruffing, P. Moreno-Sanchez, and A. Kate. Coinshuffle: Practical
decentralized coin mixing for bitcoin. In Proceedings of European
Symposium on Research in Computer Security (ESORICS), 2014.

[22] Y. Sompolinsky and A. Zohar. Accelerating bitcoin’s transaction
processing. fast money grows on trees, not chains. IACR Cryptology
ePrint Archive, 2013:881, 2013.

[23] S. N. Sunny King. Ppcoin: Peer-to-peer crypto-currency with proof-of-
stake. 2012.

[24] E. Syta, I. Tamas, D. Visher, D. Wolinsky, L. Gasser, N. Gailly, and
B. Ford. Keeping authorities ”honest or bust” with decentralized witness
cosigning. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2016.

[25] G. Wood. Ethereum: A secure decentralised generalised transaction
ledger. http://gavwood.com/Paper.pdf.

