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Abstract

The focus of this paper is on the sensitivity to the specification of the prior in a hidden Markov model describing

homogeneous segments of DNA sequences. An intron from the chimpanzee α-fetoprotein gene, which plays an im-

portant role in embryonic development in mammals is analysed. Three main aims are considered : (i) to assess the

sensitivity to prior specification in Bayesian hidden Markov models for DNA sequence segmentation; (ii) to examine

the impact of replacing the standard Dirichlet prior with a mixture Dirichlet prior; and (iii) to propose and illus-

trate a more comprehensive approach to sensitivity analysis, using importance sampling. It is obtained that (i) the

posterior estimates obtained under a Bayesian hidden Markov model are indeed sensitive to the specification of the

prior distributions; (ii) compared with the standard Dirichlet prior, the mixture Dirichlet prior is more flexible, less

sensitive to the choice of hyperparameters and less constraining in the analysis, thus improving posterior estimates;

and (iii) importance sampling was computationally feasible, fast and effective in allowing a richer sensitivity analysis.

Keywords: DNA sequence; hidden Markov model; Bayesian model; sensitivity analysis; α-fetoprotein; Markov chain

Monte Carlo; importance sampling.

1 Introduction

Many genome sequences display heterogeneity in base composition in the form of segments of similar struc-

ture. A number of statistical techniques have been developed to identify these homogeneous DNA segments,

as reviewed in Braun and Müller (1998). One technique, proposed in Churchill (1989), describes DNA se-

quence structure using a hidden Markov model (HMM) which is, in essence, a mixture model with Markov-

dependent component indicators (Macdonald and Zucchini, 1997). Sequence analysis using HMMs is now

a standard approach (Durbin et al., 1998) in the comparatively young science of bioinformatics and is a
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fundamental component of many gene-finding algorithms which identify and delineate genes in the human

and other genomes (Defonzo, 2007).

Bayesian inference procedures and algorithms have revolutionized the field of computational biology (Liu

and Logvinenko, 2003) due to the development of computationally-intensive simulation-based methods such

as Markov chain Monte Carlo (MCMC), which are available in software such as WinBUGS (Lunn et al.,

2000), and has led to the adoption of increasingly complex models in many situations.

A sometimes controversial aspect of the Bayesian approach is the need to specify prior distributions for

the unknown parameters. In certain situations these priors may be very well defined. However, for complex

models with many parameters, the choice of priors and conclusions of the subsequent Bayesian analysis are

usually validated through a prior sensitivity analysis, as presented here.

For DNA sequence segmentation, a DNA sequence can be thought of as the observed process which

evolves independently or dependently given an unobserved Markov chain which locates the position of the

segment types. The parameters in this model are the base (nucleotide) transition probabilities for the

segment types and the transition matrix of segment types. Boys et al. (2000) presented a Bayesian solution

to the segmentation problem using HMMs when the number of segments is known. These results were

generalised in Boys and Henderson (2004) to the case in which the number of segments is unknown. In Boys

et al. (2000) and Boys and Henderson (2004), the prior knowledge for base transition probabilities in each

segment was weak but the prior beliefs about the transition matrix for the segment types were strong. The

authors discussed briefly the sensitivity of their conclusion to the choice of prior, especially for the transition

matrix for the segment types, but no details were given. Their articles raise fundamental questions about

limitations in model specification and bring to the forefront the issue of how far one can refrain from making

prior assumptions about a model while keeping it feasible in practice. This prompts the important question

of the impact of these priors on resultant inferences.

This paper has three main aims. The primary aim is to undertake a sensitivity analysis of the priors of a

Bayesian hidden Markov model for DNA sequence segmentation. We employ Markov chain Monte Carlo via

a short and easy-to-use program in BRuGS (“Bayesian analysis using Gibbs Sampler in R”). The sensitivity

analysis includes a traditional approach, varying the prior distributions for base transition probabilities for

each segment type and for the transition matrix of segment types. A sequence of Dirichlet priors is considered

for the former and Dirichlet and mixture Dirichlet priors for the latter. The second aim of this paper is to

introduce an alternative approach to sensitivity analysis that employs importance sampling of an MCMC

chain obtained from the traditional approach. Our focus is on the feasibility and computational efficiency

of this approach for comparing a large number of priors simultaneously in a more comprehensive sensitivity

analysis. The results are applied to the segmentation of a benchmarking DNA sequence, intron 7 of the

chimpanzee α-fetoprotein gene.

2 Methods

2.1. The hidden Markov model

A DNA sequence y = y1, y2, ..., yn can be considered as a realisation of a random process Y1, Y2, ..., Yn

where Yt ∈ {a, c, g, t}, t = 1, 2, ...n, represent the four nucleotides adenine, cytosine, guanine and thymine,

respectively, and n represents the length of the sequence. For convenience, the data can be encoded as 1,
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2, 3, 4 for a, c, g and t, respectively. Suppose that there are at most r types of homogeneous segment

within the DNA sequence. The (hidden) segment type at location t will be denoted by St ∈ {1, 2, ..., r} for

t = 1, 2, ..., n.

Assume that transitions between bases, Yt−1 → Yt, follow a first-order Markov chain, where the choice

of transition matrix is determined by the hidden state St. Following Boys et al. (2000), we denote the 4× 4

transition matrices for each segment type by P = {P (1), P (2), ..., P (r)}, where P (k) = (P
(k)
ij ). The update

equations for the base transitions are

P (Yt = yt|St = st, y1, ..., yt−1,P) = P (Yt = yt|St = st, yt−1,P)

= P (st)
yt−1yt

. (1)

The hidden state process of segment types is assumed to be a homogeneous first-order Markov chain with

r × r transition matrix Λ = (λij) such that

P (St = st|s1, ..., st−1, Λ) = P (St = st|st−1, Λ) = λst−1st
. (2)

Assuming that Y1 and S1 follow independent discrete uniform distributions and by using (1) and (2), the

likelihood for the model parameters P and Λ, given the observed DNA sequence y and the hidden segment

types s, is

L(P,Λ|y, s) =
1

4r

n
∏

t=2

P (st)
yt−1yt

λst−1st
.

The posterior distribution for the model parameters P and Λ and unobserved segment types s can be

obtained by using Gibbs sampling with data augmentation. Let π(P, Λ|y, s) be the posterior distribution

of the parameters. Given the multinomial form of the likelihood function, we adopt a conjugate Dirichlet

prior distribution, described in more detail below. Combining the likelihood with these priors using Bayes’

theorem produces independent Dirichlet distributions for the rows of the transition matrices.

2.2. The priors

A choice of priors is available for the base transition probabilities for the segment types and the transition

matrix of segment types.

A typical row of a base transition matrix and a row of the segment type transition matrix are denoted

by pi = (pij) and λk = (λkj), respectively. Given that the likelihood is multinomial, the conjugate prior

distributions for pi and λk are a Dirichlet π(pi) ∝
∏4

j=1 p
aij−1
ij , 0 < pij < 1, j=1,2,3,4,

∑4
j=1 pij = 1 and a

Dirichlet π(λk) ∝
∏r

k=1 λ
bkj−1
kj , 0 < λkj < 1, k, j=1,2,...,r, where ai = (aij) and bk = (bkj) are the positive

parameters of the distribution.

Similarly, following Boys et al. (2000), it is further assumed that the Dirichlet prior distributions, D, for

the rows of each transition matrix are independent, and therefore

p
(k)
i =

(

p
(k)
ij

)

∼ D(a
(k)
i ), i, j = 1, ..., 4, k = 1, ..., r, (3)

λk = (λkj) ∼ D(bk), k, j = 1, ..., r. (4)

Another possible prior distribution for this type of problem is a mixture of Dirichlet distributions (Brown et

al., 1993), defined as

D = q1D1 + ... + qvDv, (5)
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where 0 ≤ qi ≤ 1 such that
∑v

i=1 qi = 1 and where each Di, i = 1, ..., v, is a Dirichlet density function. The

advantage of a mixture Dirichlet distribution lies in its flexibility for incorporating the segment types into

the model.

The choice of prior for base transition matrices will depend on the purpose of analysis (Boys and Hen-

derson, 2004). If the purpose is to screen general DNA sequences for possible homogeneous segments with-

out any prespecified base transitions, as we pursue here, then a weak, or non-informative, prior should

be used for P. One such prior assigns ai = (1, 1, 1, 1) along the rows in (3). Thus, components pij are

distributed as Beta(1,3) with mean 1/4, standard deviation
√

3/80 and correlation between row elements

corr(pij , pij′) = −0.47, for j 6= j′. Using this prior specification for each of the r segment types leads to an

equivalent sequence length of 20r (Boys et al., 2000).

A generalisation of this prior, which we consider below, is

ai = (1 + δ1, 1 + δ2, 1 + δ3, 1 + δ4), δm > 0, m = 1, .., 4, (6)

along the rows in (3). A sensitivity analysis is thus facilitated by considering a range of values for each

δm,m = 1, 2, 3, 4.

Following Boys et al. (2000), a strong prior is assigned to the transition matrix for the hidden states. For

detecting homogeneous segments, which are usually long segments, the assumptions in Boys et al. (2000)

are adopted, namely that transitions between segment types are rare, that is, E(λkk) → 1, and that the off-

diagonal elements, λkj for j 6= k, in (4) are exchangeable so that the parameters of the Dirichlet distribution

have the form bk = (d, d, ..., d, c, d, ..., d, d) where c is the kth element. Again following Boys et al. (2000),

we consider two cases: (i) fixing the mean E(λkk) and varying the standard distribution sd(λkk), and (ii)

varying E(λkk) for a fixed sd(λkk). For a mixture Dirichlet, the number of components v of the mixture is

set equal to the number of segments r, as in (5), where Di follows (4) and the parameters have the form

bk = (d, d, ..., d, c, d, ..., d, d). A summary of the types of priors used for the sensitivity analysis is given in

Table 1.

Table 1

Summary of prior types used in the sensitivity analysis

Type p
(k)
i of (3) λk of (4) E(λkk) sd(λkk)

I D(1, 1, 1, 1) Dirichlet 0.99
0.003
0.005
0.010

II D(1, 1, 1, 1) Dirichlet
0.98
0.99
0.995

0.010

III D(1, 1, 1, 1) Mixture
Dirichlet 0.99

0.003
0.005
0.010

IV D(1, 1, 1, 1) Mixture
Dirichlet

0.98
0.99
0.995

0.010

V
D(1 + δ1, 1 + δ2,
1 + δ3, 1 + δ4)

Dirichlet or
Mixture Dirichlet 0.99 0.010
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2.3. Implementation

The results in this paper were obtained using MCMC in BRuGS, with a burn-in period of 750,000 itera-

tions followed by 100,000 updates of thinning 10. For each parameter, CODA tests were run to check the con-

vergence of the chain. The CODA tests include Geweke, Gelman and Rubin, Raftery-Lewis and Heidelberger

and Welch. Most of these tests confirmed convergence after the nominated burn-in. In general, parameters

Λ and P(k), k = 1, ..., r, passed the convergence diagnostics using Gelman-Rubin and Heidelberger-Welch

tests, indicating that stationarity was achieved (Mengersen et al., 1999).

Two approaches to sensitivity analysis were employed. First, a traditional approach was used for prior

types I to IV by generating separate MCMC chains for each combination of parameters of interest. However,

running one chain of the MCMC algorithm for complex models such as DNA segmentation modelling is

computationally demanding, and so the set of combinations that can be inspected in this way is limited.

For example, due to the limitations of BRuGS, the average computing time was about 5 hours per run for

this relatively small dataset on a standard desktop PC. To address this typical problem, one MCMC chain

is run using a ‘baseline’ set of parameters and then importance sampling (IS) (Besag et al., 1995) is applied

to this chain for each of the other combinations of parameters. Our second approach to sensitivity analysis

involved implementing this procedure for P in order to more explicitly assess the impact of moving away

from a Dirichlet prior with equal (uniform) parameters.

The IS approach is undertaken as follows. Define the statistic of interest, Hπ(x) = Eπ[h(θ)|x], of some

given function h on θ for which {θ}T
t=1 is a Markov chain whose stationary distribution is π(θ|x), and let

π′(θ) be another prior. We approximate Hπ(x) by

Ĥπ′(x) =

∑T
t=1 h(θt)w(θt)
∑T

t=1 w(θt)
, (7)

where w(θ) = π′(θt)/π(θt). The approximating properties of Ĥπ′(x) to Hπ(x) are given in McVinish et al.

(2008). In particular, if π′ ≤ Mπ for some constant M then Ĥπ′(x) has the same ergodic properties as

Ĥπ′(x) =

∑

T

t=1
h(θt)

T which is the usual MCMC estimator.

While estimates from IS will work with sufficient large sample sizes, it is important to be able to assess

the accuracy of a given estimate. Assuming certain conditions hold the central limit theorem can be applied

to both numerator and denominator of Ĥ. In particular if both w2 and h2w2(θ) satisfy the drift condition

of Theorem 17.0.1 of Meyn and Tweedie (1993), then there exist a central limit theorems for the numerator

and the denominator and, applying the delta method it is seen that

(γ2)−1/2
(

Ĥ − Hπ′

)

d
→ N (0, 1),

where

γ2 = [Eπ(w(θ))]
2 [

H2
π′var(w̄) + var(h̄w) − 2cov(w̄, h̄w)Hπ′

]

and

h̄w = T−1
T

∑

t=1

h(θt)w(θt), w̄ = T−1
T

∑

t=1

w(θt).

In order to avoid estimating the variances and covariance separately we propose the following approach.

Suppose both Eπ(w(θ)) and Eπ(h(θ)w(θ)) were known. The sample mean of the series

Z(θt) =
Eπ(h(θ)w(θ))

Eπ(w(θ))

(

w(θt)

Eπ(w(θ))
−

h(θt)w(θt)

Eπ(h(θ)w(θ))

)
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can be seen to have the same asymptotic variance as Ĥ. Replacing Eπ(w(θ)) and Eπ(h(θ)w(θ)) with their

respective sample means an estimate of γ2 can be obtained using one of the methods described in Geyer

(1992). When conducting a sensitivity analysis where π(θ) is flatter than π′(θ), then w(θ) will typically be

bounded and a central limit theorem for Ĥ is available with the above asymptotic variance as soon as the

MCMC chain is V -ergodic with V ≥ 1.

An MCMC run was first undertaken to obtain the posterior distribution for P based on the uniform

Dirichlet prior in (3) with ai = (1, 1, 1, 1), i = 1, .., 4. We then used IS to conduct a local sensitivity

analysis evaluating the posterior distribution for P based on ai in (6) corresponding to all 80 combinations

of δm = 0, 1, 2 and m = 1, 2, 3, 4 simultaneously, as shown in Section 3.4. This is also consistent with the

condition that the baseline prior is flatter than the proposed priors.

Because of the smaller scale of the traditional sensitivity analysis, the results are evaluated by compar-

ison of the posterior estimates and corresponding precision of the segment type locations and transition

probabilities. The large-scale sensitivity analysis based on importance sampling is evaluated by computing

the sum squared of distances between posterior distributions, calculated as ∆l =
∑4

i=1

∑4
j=1 |P̂

(k)
ijl − P̂

(k)
ij1 |

2,

l = 1, ..., 81, where P̂
(k)
ij1 are the posterior mean estimates of base transition probabilities given in segment k,

as denoted by P
(k)
ij , obtained using MCMC and P̂

(k)
ijl , l = 2, ..., 81 are obtained via IS. Larger values of ∆l

indicate greater sensitivity to the prior specification.

3 Results

3.1. The data

The structure of introns (non-coding regions within genes) is of interest because irreversible transpositions

and other mutations are more likely to be preserved in these regions than in exons (coding regions), and hence

the intron structure becomes a more reliable time guide for deciphering phylogenies (Nishio et al.,1995). A

comprehensive review of segmentation methods for DNA sequences can be found in Braun and Müller (1998).

The intron data in which we are interested is intron 7 of the chimpanzee α-fetoprotein gene (Nishio

et al.,1995) which does contain distinct homogeneous segments (Boys et al., 2000). This gene plays an

important role in embryonic development in mammals; in particular unusual levels in pregnant women are

associated with fœtal genetic disorders such as spina bifida and Down’s syndrome. This gene is 18,867 base

pairs long, composed of 15 exons separated by 14 introns. The full nucleotide sequence is in the GenBank

sequence database under accession number U21916. Intron 7 starts at nucleotide 11,712 from 5’ end of the

α-fetoprotein gene and has a length of 1,968 base pairs.

3.2. Posterior summaries for Λ and P

Table 2 presents the posterior mean and standard deviation estimates (to two decimal places) for the

segment transition probabilities, Λ, and for the base transition probabilities, P. Results are given for

different prior standard deviations using both Dirichlet and mixture Dirichlet priors for Λ. The precision of

the estimates are evaluated by the standard deviation estimates for the corresponding parameters.
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Table 2

Posterior summaries of Λ and P using prior types I and III for a fixed E(λkk) = 0.99 and various standard

deviations sd(λkk).

Type I Type III
Λ Λ

sd mean standard deviation mean standard deviation

0.003

(

0.99 0.01 0.01
0.26 0.33 0.40
0.00 0.00 0.99

) (

0.00 0.00 0.00
0.10 0.11 0.11
0.00 0.00 0.00

) (

0.99 0.00 0.01
0.01 0.98 0.01
0.99 0.00 0.01

) (

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

)

0.005

(

0.99 0.01 0.01
0.23 0.34 0.43
0.00 0.00 0.99

) (

0.01 0.00 0.00
0.15 0.18 0.19
0.00 0.00 0.00

) (

0.99 0.01 0.00
0.00 0.99 0.01
0.00 0.99 0.01

) (

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

)

0.01

(

0.99 0.01 0.00
0.01 0.98 0.01
0.01 0.00 0.99

) (

0.00 0.00 0.00
0.01 0.01 0.01
0.01 0.01 0.01

) (

0.98 0.01 0.01
0.00 0.99 0.01
0.01 0.98 0.01

) (

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.01 0.00

)

sd P (1) P (1)

0.003

(

0.26 0.25 0.19 0.30
0.05 0.43 0.01 0.51
0.21 0.22 0.18 0.39
0.03 0.37 0.06 0.54

) (

0.17 0.17 0.13 0.16
0.03 0.06 0.01 0.06
0.14 0.12 0.12 0.15
0.02 0.05 0.03 0.05

) (

0.35 0.15 0.26 0.24
0.34 0.21 0.04 0.41
0.33 0.20 0.24 0.23
0.23 0.16 0.22 0.38

) (

0.02 0.02 0.02 0.02
0.03 0.02 0.01 0.03
0.02 0.02 0.02 0.02
0.02 0.02 0.02 0.02

)

0.005

(

0.31 0.21 0.22 0.26
0.05 0.42 0.01 0.52
0.26 0.22 0.16 0.36
0.03 0.36 0.07 0.53

) (

0.17 0.15 0.12 0.14
0.03 0.06 0.01 0.06
0.14 0.11 0.11 0.14
0.02 0.05 0.03 0.05

) (

0.30 0.23 0.19 0.28
0.05 0.42 0.01 0.52
0.24 0.22 0.17 0.36
0.04 0.37 0.07 0.52

) (

0.17 0.16 0.12 0.15
0.03 0.06 0.01 0.06
0.14 0.12 0.11 0.14
0.02 0.05 0.03 0.05

)

0.01

(

0.35 0.16 0.23 0.26
0.34 0.21 0.04 0.41
0.32 0.20 0.21 0.26
0.23 0.17 0.21 0.39

) (

0.02 0.02 0.02 0.02
0.03 0.02 0.01 0.03
0.03 0.02 0.03 0.03
0.02 0.02 0.02 0.02

) (

0.31 0.22 0.20 0.27
0.05 0.42 0.02 0.51
0.25 0.21 0.17 0.37
0.04 0.36 0.07 0.53

) (

0.17 0.15 0.11 0.14
0.03 0.06 0.01 0.06
0.14 0.11 0.11 0.14
0.02 0.05 0.03 0.05

)

sd P (2) P (2)

0.003

(

0.26 0.25 0.23 0.26
0.26 0.24 0.22 0.28
0.26 0.23 0.24 0.27
0.25 0.24 0.27 0.24

) (

0.20 0.19 0.19 0.20
0.20 0.19 0.18 0.20
0.20 0.19 0.19 0.20
0.19 0.19 0.20 0.19

) (

0.15 0.36 0.14 0.35
0.04 0.44 0.01 0.50
0.14 0.25 0.24 0.37
0.03 0.38 0.05 0.54

) (

0.13 0.17 0.12 0.17
0.03 0.06 0.01 0.06
0.12 0.14 0.14 0.17
0.02 0.05 0.02 0.05

)

0.005

(

0.27 0.24 0.23 0.26
0.26 0.24 0.22 0.28
0.25 0.24 0.24 0.27
0.25 0.25 0.26 0.24

) (

0.20 0.19 0.19 0.20
0.19 0.19 0.18 0.21
0.19 0.19 0.19 0.20
0.19 0.19 0.19 0.19

) (

0.35 0.15 0.25 0.24
0.35 0.21 0.05 0.39
0.33 0.20 0.24 0.23
0.24 0.16 0.22 0.38

) (

0.02 0.02 0.02 0.02
0.03 0.02 0.01 0.03
0.03 0.02 0.02 0.02
0.02 0.01 0.01 0.02

)

0.01

(

0.34 0.16 0.22 0.28
0.34 0.21 0.04 0.41
0.32 0.21 0.21 0.27
0.23 0.17 0.20 0.40

) (

0.03 0.02 0.02 0.03
0.03 0.03 0.01 0.03
0.03 0.03 0.03 0.03
0.02 0.02 0.02 0.03

) (

0.19 0.33 0.15 0.33
0.04 0.45 0.02 0.49
0.13 0.26 0.25 0.36
0.03 0.39 0.05 0.53

) (

0.16 0.18 0.13 0.17
0.03 0.06 0.01 0.06
0.12 0.15 0.14 0.17
0.02 0.06 0.02 0.06

)

sd P (3) P (3)

0.003

(

0.35 0.15 0.26 0.24
0.34 0.21 0.05 0.40
0.33 0.20 0.24 0.23
0.24 0.16 0.22 0.38

) (

0.02 0.01 0.02 0.01
0.03 0.02 0.01 0.03
0.02 0.02 0.02 0.02
0.02 0.01 0.01 0.02

) (

0.25 0.25 0.25 0.25
0.25 0.24 0.24 0.27
0.25 0.25 0.25 0.25
0.27 0.25 0.23 0.25

) (

0.19 0.19 0.19 0.19
0.19 0.19 0.19 0.20
0.19 0.19 0.20 0.19
0.20 0.20 0.19 0.19

)

0.005

(

0.35 0.16 0.25 0.24
0.34 0.21 0.05 0.40
0.33 0.20 0.24 0.23
0.24 0.16 0.22 0.38

) (

0.02 0.01 0.02 0.02
0.03 0.02 0.01 0.03
0.02 0.02 0.02 0.02
0.02 0.01 0.02 0.02

) (

0.25 0.25 0.25 0.25
0.26 0.24 0.24 0.26
0.25 0.25 0.24 0.26
0.25 0.25 0.26 0.24

) (

0.20 0.19 0.19 0.19
0.20 0.19 0.19 0.20
0.19 0.19 0.19 0.20
0.19 0.19 0.19 0.19

)

0.01

(

0.32 0.11 0.52 0.05
0.33 0.24 0.13 0.30
0.33 0.19 0.36 0.11
0.16 0.12 0.63 0.09

) (

0.13 0.06 0.14 0.04
0.11 0.09 0.07 0.09
0.07 0.06 0.06 0.04
0.10 0.09 0.12 0.07

) (

0.25 0.24 0.25 0.25
0.25 0.24 0.24 0.26
0.25 0.25 0.24 0.26
0.25 0.25 0.25 0.25

) (

0.19 0.19 0.19 0.20
0.19 0.19 0.18 0.20
0.19 0.19 0.19 0.20
0.19 0.20 0.19 0.19

)

Under a Dirichlet prior for Λ, it appears that varying the standard deviation of the parameters has a

substantial impact on the posterior mean estimates. In particular, increasing the standard deviation of these

parameters, facilitating greater movement around the parameter space, enables a satisfactory solution to be

found: compare, for example, the posterior standard deviation estimates for Λ, P (1) and P (2) for the prior

with sd = 0.01 with those for sd = 0.003 and 0.005. On the other hand, there is a suggestion from the results

for P (3) with sd = 0.01 that excessive vagueness in the priors leads to poorer estimates compared with those

for sd = 0.003 and 0.005. Furthermore, under a Dirichlet prior for Λ, the posterior mean estimates of P (2)

for sd = 0.003, 0.005 are similar to those of the assigned uniform prior.

The comparative flexibility of mixture Dirichlet priors for Λ is also reflected in this table: it appears that

satisfactory posterior mean estimates (with smaller posterior standard deviations) can be identified under a

wider range of prior sd values. The estimates of transition probabilities from the third segment to others are

close to 1 suggesting the possibility of two segments model. Moreover, under a mixture Dirichlet prior for Λ,

the posterior mean estimates of P (3) for all sd priors are similar to those of the uniform prior, showing that

the existence of the third segment can be neglected. In the case of P (2), a dramatic decrease in standard

deviations is observed when the mean converges to a satisfactory estimate. Similar results were obtained

for type II and IV priors, with the mixture Dirichlet prior again outperforming the Dirichlet prior, and are

omitted here.
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Fig. 1. Posterior probability of each location belonging to segment 1, with r = 3, using Dirichlet prior (left) and

mixture Dirichlet prior (right), for the case of fixed mean E(λkk) = 0.99 and different standard deviations: 0.003

(solid line), 0.005 (dashed line) and 0.010 (dotted line).

3.3. Posterior summaries for segments

Figure 1 shows a close-up of the estimates of P (St = 1|y) in the first 100 locations of the sequence,

varying the standard deviation while fixing the mean for both the Dirichlet prior and the mixture Dirichlet

prior. In the case of the Dirichlet prior, the plot shows that changes in segment type become less certain as

the prior uncertainty about λkk increases. For example, in locations 40 to 50 for sd = 0.01, the probability

of being in segment 1 is close to 0.5, but only 0.05 for sd = 0.003 and 0.005. On the other hand, for the

mixture Dirichlet prior the variation among the three standard deviations is less for locations 30 to 100,

showing that the analysis is less sensitive to the mixture Dirichlet prior than to the Dirichlet prior.

Figure 2 shows similar plots in which the mean is varied while fixing the standard deviation for the

Dirichlet and mixture Dirichlet priors. These illustrations confirm that under the Dirichlet prior, lower

mean values are associated with more frequent changes in segment type; for example, for mean 0.98, the

sequence is in segment 1 for locations 1 to 30, fluctuates until location 60 and stays in segment 1 afterwards.

A similar but stronger conclusion is evident for the mixture Dirichlet prior.

Figure 3 presents a further close-up of the posterior probability estimates for each location, P (St =

k|y), k = 1, 2, 3 in the first 100 locations of the sequence, for fixed mean E(λkk) = 0.99 and fixed standard

deviation sd(λkk) = 0.003, for both Dirichlet and mixture Dirichlet priors. Whilst the Dirichlet prior

estimates a small probability of the existence of segment type 3 in the first 100 locations, the mixture

Dirichlet prior shows a stronger result, with probabilities are almost zero. The reduced uncertainty apparent

in the latter case reflects the insensitivity to the mixture Dirichlet prior.

3.4. Posterior summaries for P

The IS algorithm was used to compare 81 priors simultaneously, representing combinations 34 of δm =

0, 1, 2, m = 1, 2, 3, 4 in (6). An MCMC run was first undertaken using the uniform Dirichlet prior δm = 0,

for m = 1, 2, 3, 4, and the results for the other priors were derived using IS as described in Section 2.3. Figure
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Fig. 2. Posterior probability of each location belonging to segment 1 with r = 3 using Dirichlet prior (left) and

mixture Dirichlet prior (right), for the case of fixed standard deviation sd(λkk) = 0.01 and different means: 0.98

(solid line), 0.99 (dashed line) and for 0.995 (dotted line).
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Fig. 3. Posterior probability of each location belonging to each segment type, segment 1 (solid line), segment 2

(dashed line) and segment 3 (dotted line), using Dirichlet prior (left) and mixture Dirichlet prior (right), for the case

of fixed mean E(λkk) = 0.99 and fixed standard deviation sd(λkk) = 0.003.
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Fig. 4. Importance sampling distances using 81 Dirichlet priors for P and a Dirichlet or mixture Dirichlet prior for

Λ with E(λkk)=0.99, sd(λkk)=0.01. (a) Sum of squared distances ∆l, where “Index” refers to l = 1, 2, ..., 81 for a

Dirichlet; (b) histogram of the values in (a); (c) sum of squared distances ∆l, where “Index” refers to l = 1, 2, ..., 81

for a mixture Dirichlet; (d) histogram of the values in (c).
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Fig. 5. The first 20 sum of squared distances ∆l, where “Index” refers to l = 1, 2, ..., 20 for the Dirichlet of Figure

4(a).
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4 shows the sum of squared differences, ∆l, l = 1, ..., 81, between posterior mean estimates for all Pij , for

i = 1, 2, 3, 4 and j = 1, 2, 3, 4, and those from the uniform Dirichlet prior. Figures 4(a) and (b) show results

for a Dirichlet prior on Λ with a fixed mean 0.99 and standard deviation 0.01; Figures 4(c) and (d) show

results for a mixture Dirichlet prior. In the former case, the sum of squared differences range between 0 and

0.12, whereas in the latter case, less sensitivity is exhibited, with much tighter ranges. Furthermore, we can

see that estimates of P are potentially quite sensitive to the change in priors. This is shown more clearly

in Figure 5; there is, for example, a substantial difference between the posterior estimates under a uniform

prior and priors Dir(3,1,1,1) (index 3) and Dir(1,3,1,1) (index 7).

Finally, a model checking is briefly presented. One technique for checking the fit of a model to data is

to draw simulated values from the posterior predictive distribution of replicated data and compare these

samples to the observed data (Gelman, et al., 1993). From the previous results, it is apparent that two-

segments HMM is preferred. Using the Type I prior with sd=0.01, the posterior predictive distribution was

simulated using a two-segments HMM with the estimated parameters

Λ̂ =
(

0.99 0.01
0.01 0.99

)

,

P̂(1) =





0.35 0.15 0.26 0.24
0.34 0.21 0.05 0.40
0.33 0.20 0.24 0.23
0.23 0.16 0.22 0.38



 ,

P̂(2) =





0.17 0.34 0.15 0.34
0.04 0.45 0.01 0.50
0.14 0.26 0.23 0.37
0.03 0.39 0.05 0.53



 .

The comparison of timeplots is depicted in Figure 6. It is clear that in general the model fits the data

well, except that the model seems to underestimate or overestimate the observed data in some locations. For

example, the nucleotide ’c’ is underestimated more often compared to other nucleotides. But in the other

hand, the nucleotides ’a’ and ’g’ were overestimated in the last 300 positions. Further methods to measure

the goodness of fit can be elaborated using a test quantity such as a discrepancy measure or by calculating

posterior predictive p-values.

4 Discussion

We have performed a thorough local sensitivity analysis on priors in a Bayesian analysis of DNA sequence

segmentation using hidden Markov models. Three main aims were addressed: (i) to assess the sensitivity

to prior specification in hidden Markov models for DNA sequence segementation analysis; (ii) to examine

the impact of replacing the standard Dirichlet prior with a mixture of Dirichlet distributions prior; and (iii)

to propose and illustrate a more comprehensive approach to sensitivity analysis using importance sampling.

We observed that (i) the posterior estimates obtained under were indeed sensitive to the specification and

precision of prior distributions imposed on the segment types and transition matrix of segment types; (ii)

compared with the standard Dirichlet prior, the mixture Dirichlet prior was more flexible to define, less

sensitive to the choice of hyperparameters and less constraining in the analysis, thus improving posterior

estimates; and (iii) the importance sampling was computationally feasible, fast and effective in allowing a

richer sensitivity analysis.

Two implications for practice arise from this work. First, priors are an integral and influential part

of complex Bayesian models such as the one considered here. A sensitivity analysis thus becomes crucial

11



0 500 1000 1500 2000

1.
0

3.
5

position t

In
tr

on
 7

 d
at

a

0 500 1000 1500 2000

1.
0

3.
5

position t

F
itt

ed

Fig. 6. The comparison of the intron 7 data (top) with the observations obtained using the model (bottom).

in assessing the impact of prior specification, particularly where these are noninformative. Secondly, the

traditional approach of evaluating a limited number of alternative priors is not only inefficient but also

potentially misleading. Innovative computational approaches, such as the importance sampling algorithm

described here, enable a comprehensive evaluation of the space of possible priors, allowing us to adequately

assess the impact of prior choice on posterior inference.
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